APEC 8001: Problem Set 1 Answer Key

Professor: Paul Glewwe TA: Julieth Santamaria

September 18, 2017

1. Consider a choice problem with choice set $X=\{x, y, z\}$. For each of the following choice structures say whether WARP is satisfied and whether there exists a rational preference relation that rationalizes $\mathcal{C}($.$) relative to its \mathcal{B}$. If such rationalization is possible, write it down. Comment on your results.
(a) $\left(\mathcal{B}^{\prime}, \mathcal{C}().\right)$, where $\mathcal{B}^{\prime}=\{\{x, y\},\{y, z\},\{x, z\},\{x\},\{y\},\{z\}\}$ and $\mathcal{C}(\{x, y\})=\{x\}, \mathcal{C}(\{y, z\})=$ $\{y\}, \mathcal{C}(\{x, z\})=\{z\}, \mathcal{C}(\{x\})=\{x\}, \mathcal{C}(\{y\})=\{y\}, \mathcal{C}(\{x\})=\{z\}$
Sol.
$\mathcal{C}(\{x, y\})=\{x\}$ reveals $x \succ y$
$\mathcal{C}(\{y, z\})=\{y\}$ reveals $y \succ z$
$\mathcal{C}(\{x, z\})=\{z\}$ reveals $z \succ x$
Then, W.A.R.P. is satisfied but $\left(\mathcal{B}^{\prime}, \mathcal{C}().\right)$ is not rationalizable because preferences are not transitive.
(b) $\left(\mathcal{B}^{\prime \prime}, \mathcal{C}().\right)$, where $\mathcal{B}^{\prime \prime}=\{\{x, y, z\},\{x, y\},\{y, z\},\{x, z\},\{x\},\{y\},\{z\}\}$ and $\mathcal{C}(\{x, y, z\})=$ $\{x\}, \mathcal{C}(\{x, y\})=\{x\}, \mathcal{C}(\{y, z\})=\{z\}, \mathcal{C}(\{x, z\})=\{z\}, \mathcal{C}(\{x\})=\{x\}, \mathcal{C}(\{y\})=$ $\{y\}, \mathcal{C}(\{z\})=\{z\}$
Sol.
$\mathcal{C}(\{x, y, z\})=\{x\}$ reveals $x \succ y$ and $x \succ z$
$\mathcal{C}(\{x, y\})=\{x\}$ reveals $x \succ y$
$\mathcal{C}(\{y, z\})=\{z\}$ reveals $z \succ y$
$\mathcal{C}(\{x, z\})=\{z\}$ reveals $z \succ x$
Then, W.A.R.P. is not satisfied because $x \succ z$ and $z \succ x$ are satisfied at the same time. $\left(\mathcal{B}^{\prime}, \mathcal{C}().\right)$ is not rationalizable.
(c) $\left(\mathcal{B}^{\prime \prime \prime}, \mathcal{C}().\right)$, where $\mathcal{B}^{\prime \prime \prime}=\{\{x, y, z\},\{x, y\},\{y, z\},\{x, z\},\{x\},\{y\},\{z\}\}$ and $\mathcal{C}(\{x, y, z\})=$ $\{x\}, \mathcal{C}(\{x, y\})=\{x\}, \mathcal{C}(\{y, z\})=\{y\}, \mathcal{C}(\{x, z\})=\{x\}, \mathcal{C}(\{x\})=\{x\}, \mathcal{C}(\{y\})=$ $\{y\}, \mathcal{C}(\{z\})=\{z\}$
Sol.
$\mathcal{C}(\{x, y, z\})=\{x\}$ reveals $x \succ y$ and $x \succ z$
$\mathcal{C}(\{x, y\})=\{x\}$ reveals $x \succ y$
$\mathcal{C}(\{y, z\})=\{y\}$ reveals $y \succ z$
$\mathcal{C}(\{x, z\})=\{x\}$ reveals $x \succ z$
Then, W.A.R.P. is satisfied and $\left(\mathcal{B}^{\prime}, \mathcal{C}().\right)$ is rationalizable.
2. A consumer chooses bundles of two goods. In one situation $\left(p_{1}, p_{2}\right)=(1,1), w=1$ and $\left(x_{1}, x_{2}\right)=(0.5,0.5)$. At the new situation, $\left(p_{1}^{\prime}, p_{2}^{\prime}\right)=\left(2, p_{2}^{\prime}\right)$ and $\left(x_{1}^{\prime}, x_{2}^{\prime}\right)=(0.75,0.25)$. Assuming her demand satisfies Walras' law, what are the values of p_{2}^{\prime} and w^{\prime} that make her choices compatible with WARP?

Sol.

If her preferences are compatible with WARP and they satisfy Walras' law, then if $p . x\left(p^{\prime}, w^{\prime}\right) \leq w$ and $x\left(p^{\prime}, w^{\prime}\right) \neq x(p, w)$, then $p^{\prime} . x(p, w)>w^{\prime}$.

The first part holds because $(1 \times 0.75)+(1 \times 0.25)=1$. Also, both, the initial bundle and the second one are different. Then, it must be true that $(2 \times 0.5)+0.5 p_{2}^{\prime}>w^{\prime}$ (with strict inequality!).

$$
\begin{equation*}
1+0.5 p_{2}^{\prime}>w^{\prime} \tag{1}
\end{equation*}
$$

Because Walras' law must hold with the second bundle, we also know that $(2 \times 0.75)+$ $0.25 \times p_{2}^{\prime} \leq w^{\prime}$.

$$
\begin{equation*}
1.5+0.25 p_{2}^{\prime} \leq w^{\prime} \tag{2}
\end{equation*}
$$

Combining equations 1 and 2 , we obtain that $p_{2}^{\prime}>2$. Notice from equation 2 that $p_{2}^{\prime} \leq \frac{w^{\prime}-1.5}{0.25}$. Then, $w^{\prime}>2$. So, the values that make her choices compatible with WARP are $p_{2}^{\prime} \in(2, \infty)$ and $w \in(2, \infty)$. Notice that these are open intervals.
3. The example in page 14 of lecture 1 satisfies the week axiom. Show that adding the
budget set $\{x, y, z\}$ to \mathcal{B} implies that the choices made in that example violate the weak axiom.

The example in p. 14 reveal that $x \succ y, y \succ z$, and $z \succ x$. If we include $\{x, y, z\}$ in the budget set:

- If $C(\{x, y, z\})=\{x\}$ then, $x \succ y$ and $x \succ z$
- If $C(\{x, y, z\})=\{y\}$ then, $y \succ x$ and $y \succ z$
- If $C(\{x, y, z\})=\{z\}$ then, $z \succ x$ and $z \succ y$
- If $C(\{x, y, z\})=\{x, y\}$ then, $x \succ z, y \succ z$ and $x \sim y$
- If $C(\{x, y, z\})=\{x, z\}$ then, $x \succ y, z \succ y$ and $x \sim z$
- If $C(\{x, y, z\})=\{y, z\}$ then, $y \succ x, y \succ z$ and $y \sim z$
- If $C(\{x, y, z\})=\{x, y, z\}$ then, $x \sim y \sim z$

Then every choice made when including $\{x, y, z\}$ is incompatible with the original three choices.

