Problem Set 3 - Answer Key

Professor: Paul Glewwe

TA: Julieth Santamaria

Due date: September 28, 2017

1. Imagine that you are reading a paper in which the author uses the indirect utility function $v\left(p_{1}, p_{2}, w\right)=$ $w / p_{1}+w / p_{2}$. You suspect that the author's conclusions in the paper are the outcome of the 'fact' that the function v is inconsistent with the rational behaviour as defined in class. Take the following steps to check whether this is the case:
(a) Use Roy's identity to derive the demand function.

Sol.

$$
\begin{aligned}
& x_{1}=-\frac{\partial v / \partial p_{1}}{\partial v / \partial w}=\frac{w}{p_{1}} \frac{p_{2}}{p_{1}+p_{2}} \\
& x_{2}=-\frac{\partial v / \partial p_{2}}{\partial v / \partial w}=\frac{w}{p_{2}} \frac{p_{1}}{p_{1}+p_{2}}
\end{aligned}
$$

(b) Show that if demand is derived from any smooth utility function (continuous and differentiable), then the indifference curve at the point $\left(x_{1}, x_{2}\right)$ has the slope $-\sqrt{x_{2}} / \sqrt{x_{1}}$.
Sol.

$$
\begin{gathered}
\frac{x_{1}}{x_{2}}=\frac{p_{2}^{2}}{p_{1}^{2}} \\
-\sqrt{\frac{x_{1}}{x_{2}}}=-\frac{p_{2}}{p_{1}}
\end{gathered}
$$

(c) Construct a utility function with the property that the ratio of the partial derivatives at the bundle $\left(x_{1}, x_{2}\right)$ is $-\sqrt{x_{2}} / \sqrt{x_{1}}$.
Sol.
There are many options but one could be $u\left(x_{1}, x_{2}\right)=2 x_{1}^{1 / 2}+2 x_{2}^{1 / 2}$
(d) Calculate the indirect utility function derived from this utility function. Do you arrive at the original $v\left(p_{1}, p_{2}, w\right)$? If not, can the original indirect utility function still be derived from another utility function satisfying the property in (c)?
Sol.
As we already know the solution is interior, then I can skip the Kuhn Tucker conditions.
$\frac{M U_{1}}{M U_{2}}=\frac{p_{1}}{p_{2}} \Rightarrow x_{2}=\left(\frac{p_{1}}{p_{2}}\right)^{2} x_{1}$

Plugging that in the B.C. You'll find that:
$x_{1}=\frac{p_{2} w}{p_{1}\left(p_{1}+p_{2}\right)} \quad$ and $\quad x_{2}=\frac{p_{1} w}{p_{2}\left(p_{1}+p_{2}\right)}$
Then, the indirect utility is:
$v\left(p_{1}, p_{2}, w\right)=2 \sqrt{\frac{p_{2} w}{p_{1}\left(p_{1}+p_{2}\right)}}+2 \sqrt{\frac{p_{1} w}{p_{2}\left(p_{1}+p_{2}\right)}}$
which is not the same as the utility given by the question. However, try using the following utility function, just for fun!: $u\left(x_{1}, x_{2}\right)=\frac{1}{4}\left(2 x_{1}^{1 / 2}+2 x_{2}^{1 / 2}\right)^{2}$. You will find the original indirect utility function.
2. Consider the utility function $u\left(x_{1}, x_{2}\right)=\frac{1}{2} x_{1}^{2}+\ln x_{2}$.
(a) Are these preferences convex?

Sol.

No. One way to check this is using the second derivative of x_{2} with respect to x_{1}. First solve for x_{2} (it should end up in terms of x_{1} and u), and then do the following:
$\frac{\partial^{2} x_{2}}{\partial x_{1}^{2}}=\exp \left(u-\frac{1}{2} x_{1}^{2}\right)\left(x_{1}^{2}-1\right)$
This is positive if $x_{1}>1$ but negative if $x_{1}<1$, so we have non convex preferences when $x_{1}<1$
(b) Find the Marshallian demand at $p_{1}=2, p_{2}=1$.

Sol.

The lagrangean for this problem is:
$\mathcal{L}=\frac{1}{2} x_{1}^{2}+\ln x_{2}+\lambda\left[w-2 x_{1}-x_{2}\right]$
F.O.C.
$\frac{\partial \mathcal{L}}{\partial x_{1}}=x_{1}-2 \lambda \leq 0 ; \quad \frac{\partial \mathcal{L}}{\partial x_{1}} x_{1}=0$
$\frac{\partial \mathcal{L}}{\partial x_{2}}=\frac{1}{x_{2}}-\lambda \leq 0 ; \quad \frac{\partial \mathcal{L}}{\partial x_{2}} x_{2}=0$
$\frac{\partial \mathcal{L}}{\partial \lambda}=w-2 x_{1}-x_{2}=0$ because Walras' Law should hold
i. $x_{1}>0, x_{2}>0$. From this case, we find that there are two for x_{1} (and therefore, for x_{2})

$$
x_{1}=\frac{w \pm \sqrt{w^{2}-16}}{4} \text { and } x_{2}=\frac{w \pm \sqrt{w^{2}-16}}{2}
$$

However we can discard one root. Plugging both roots in the utility function, we obtain that the biggest utility corresponds to the following demand functions:
$x_{1}=\frac{w+\sqrt{w^{2}-16}}{4}$ and $x_{2}=\frac{w-\sqrt{w^{2}-16}}{2}$ if $w \geq 4$
ii. $x_{1}=0, x_{2}>0$. In this case the marshallian demands are $x_{1}=0$ and $x_{2}=w$. This case is an optimum whenever $w<4$ (Again, check the indirect utility function).
iii. $x_{1}>0, x_{2}=0$. This case is not possible because of the shape of the utility function (Log of 0 is undefined).
iv. $x_{1}=0, x_{2}=0$. Not possible because of the same reason as the third case.

Therefore, the Walrasian demands are:

$$
\left\{\begin{array}{l}
x_{1}=\frac{w+\sqrt{w^{2}-16}}{4} \text { and } x_{2}=\frac{w \pm \sqrt{w^{2}-16}}{2} \text { if } w \geq 4 \\
x_{1}=0 \text { and } x_{2}=w \text { if } w<4
\end{array}\right.
$$

3. True or false: if no good is a strict luxury good, then no good can have wealth elasticity of 0.6.

Sol.

False. Let $\mathcal{E}_{w}=\frac{\partial x}{\partial w} \frac{w}{x}$

- If $\mathcal{E}_{w}>0$, then x is a normal good
- If $\mathcal{E}_{w}>1$, then x is a luxury good
- If $\mathcal{E}_{w} \in(0,1)$, then x is a necessity good
- If $\mathcal{E}_{w}>0$, then x is an inferior good

4. Consider the following utility functions:
(a) $U(x, y)=\left(x+2 y-\frac{y^{2}}{2}\right)$ for $x \geq 0$ and $y \geq 0$. Let $w>0$ be the wealth the consumer has available to spend on x and y . Let $p_{x}>0$ and $p_{y}>0$ be the competitive prices for x and y . For case (a), assume $\frac{w}{p_{x}} \geq 1$ and $\frac{p_{y}}{p_{x}}+\frac{w}{p_{y}}>2$.
i. Derive the consumer's Walrasian demands.

$$
\left\{\begin{array}{l}
x(p, w)=\frac{w}{p_{x}}+\frac{p_{y}^{2}}{p_{x}^{2}}-2 \frac{p_{y}}{p_{x}} \text { and } y=2-\frac{p_{y}}{p_{x}} \text { if } 2 p_{x}>p_{y} \\
x=\frac{w}{p_{x}} \text { and } y=0 \text { if } 2 p_{x} \leq p_{y}
\end{array}\right.
$$

ii. Derive the consumer's indirect utility function.

$$
V(p, w)=\left\{\begin{array}{l}
\frac{w}{p_{x}}+\frac{1}{2}\left(2-\frac{p_{y}}{p_{x}}\right)^{2} \text { if } 2 p_{x}>p_{y} \\
\frac{w}{p_{x}} \text { if } 2 p_{x} \leq p_{y}
\end{array}\right.
$$

iii. Verify that the indirect utility function is: 1 . homogeneous of degree 0 in p and $\mathrm{w} ; 2$. strictly increasing in w and non-increasing in $\mathrm{p} ; 3$. quasiconvex in p only for the utility function in case (a).

1. $V(p, w)$ is $\operatorname{HD} 0$ in (p, w)

$$
V(\alpha p, \alpha w)=\left\{\begin{array}{l}
\frac{\alpha w}{\alpha p_{x}}+\frac{1}{2}\left(2-\frac{\alpha p_{y}}{\alpha p_{x}}\right)^{2} \text { if } 2 p_{x}>p_{y} \\
\frac{\alpha w}{\alpha p_{x}} \text { if } 2 p_{x} \leq p_{y}
\end{array}\right.
$$

Notice that $V(\alpha p, \alpha w)=V(p, w)$, then it is HD0.
2. Strictly increasing in w and non-increasing in p

$$
\begin{aligned}
& \frac{\partial V(p, w)}{\partial w}=\frac{1}{p_{x}}>0 \quad \because p_{x}>0 \\
& \frac{\partial V(p, w)}{\partial p_{x}}=\left\{\begin{array}{l}
-\frac{w}{p_{x}^{2}}+\left(2-\frac{p_{y}}{p_{x}}\right) \frac{p_{y}}{p_{x}^{2}}<0 \quad \because \frac{p_{y}}{p_{x}}+\frac{w}{p_{y}}>2 \\
-\frac{w}{p_{x}^{2}}<0
\end{array}\right. \\
& \frac{\partial V(p, w)}{\partial p_{y}}=\left\{\begin{array}{l}
-\left(2-\frac{p_{y}}{p_{x}}\right) \frac{1}{p_{x}}<0 \text { if } 2 p_{x}>p_{y} \\
0 \quad \text { if } \quad 2 p_{x} \leq p_{y}
\end{array}\right.
\end{aligned}
$$

3. Quasiconvex in p

$$
\begin{gathered}
\frac{\partial^{2} V(p, w)}{\partial p_{x}^{2}}= \begin{cases}2 \frac{w}{p_{x}^{3}}-4 \frac{p_{y}}{p_{x}^{3}}+3 \frac{p_{y}^{2}}{p_{x}}>0 & \text { if } 2 p_{x}>p_{y} \quad \because 3 \frac{p_{y}}{p_{x}}+2 \frac{w}{p_{y}}>4 \\
2 \frac{w}{p_{x}^{3}}>0\end{cases} \\
\frac{\partial^{2} V(p, w)}{\partial p_{y}^{2}}= \begin{cases}\frac{1}{p_{x}^{2}}>0 & \text { if } 2 p_{x}>p_{y} \\
0 & \text { if } \quad 2 p_{x} \leq p_{y}\end{cases}
\end{gathered}
$$

iv. Show whether Roy's Law satisfied?

Yes. You can easily show that by using Roy's law: $x_{l}(p, w)=-\frac{\partial V / \partial p_{l}}{\partial V / \partial w}$, you obtain:

$$
\left\{\begin{array}{l}
x(p, w)=\frac{w}{p_{x}}+\frac{p_{y}^{2}}{p_{x}^{2}}-2 \frac{p_{y}}{p_{x}} \text { and } y=2-\frac{p_{y}}{p_{x}} \text { if } 2 p_{x}>p_{y} \\
x=\frac{w}{p_{x}} \text { and } y=0 \text { if } 2 p_{x} \leq p_{y}
\end{array}\right.
$$

v. Derive the expenditure function.

To obtain the expenditure function we solve for w in the indirect utility function. That is:

$$
e(p, u)=\left\{\begin{array}{l}
u p_{x}-\frac{p_{x}}{2}\left(2-\frac{p_{y}}{p_{x}}\right)^{2} \text { if } 2 p_{x}>p_{y} \\
u p_{x} \text { if } 2 p_{x} \leq p_{y}
\end{array}\right.
$$

vi. Derive the Hicksian demands using Shephard's Lemma.

$$
\left\{\begin{array}{l}
h_{x}=u-2+\frac{1}{2}\left(\frac{p_{y}}{p_{x}}\right)^{2} \text { and } h_{y}=2-\frac{p_{y}}{p_{x}} \text { if } 2 p_{x}>p_{y} \\
h_{x}=u \text { and } h_{y}=0 \text { if } 2 p_{x} \leq p_{y}
\end{array}\right.
$$

(b) $U(x, y)=\ln \left(\left(x^{-1}+y^{-1}\right)^{-1}\right)$ for $x>0$ and $y>0$
i. Derive the consumer's Walrasian demands.

$$
\left\{\begin{array}{l}
x(p, w)=\frac{w}{p_{x}+\sqrt{p_{x} p_{y}}} \\
y(p, w)=\frac{w}{p_{y}+\sqrt{p_{x} p_{y}}}
\end{array}\right.
$$

ii. Derive the consumer's indirect utility function.
$V(p, w)=\ln \left(\frac{w}{p_{x}+2 \sqrt{p_{x} p_{y}}}\right)$
iii. Verify that the indirect utility function is: 1 . homogeneous of degree 0 in p and $\mathrm{w} ; 2$. strictly increasing in w and non-increasing in $\mathrm{p} ; 3$. quasiconvex in p only for the utility function in case (a).

1. $V(p, w)$ is HD0 in (p, w)

$$
V(\alpha p, \alpha w)=\ln \left(\frac{\alpha w}{\alpha p_{x}+2 \sqrt{\alpha p_{x} \alpha p_{y}}}\right)=V(w, p)
$$

2. Strictly increasing in w and non-increasing in p

$$
\begin{gathered}
\frac{\partial V(p, w)}{\partial w}=\frac{w}{p_{x}+p_{y}+2 \sqrt{p_{x} p_{y}}} \frac{1}{\left[\sqrt{p_{x}}+\sqrt{p_{y}}\right]^{2}} \\
\frac{\partial V(p, w)}{\partial p_{x}}=-\frac{w}{p_{x}+p_{y}+2 \sqrt{p_{x} p_{y}}} \frac{w}{\left[\sqrt{p_{x}}+\sqrt{p_{y}}\right]} \frac{1}{\sqrt{p_{x}}}
\end{gathered}
$$

$\frac{\partial V(p, w)}{\partial p_{y}}=-\frac{w}{p_{x}+p_{y}+2 \sqrt{p_{x} p_{y}}} \frac{w}{\left[\sqrt{p_{x}}+\sqrt{p_{y}}\right]} \frac{1}{\sqrt{p_{y}}}$
iv. Show whether Roy's Law satisfied?

Yes. You can easily show that by using Roy's law: $x_{l}(p, w)=-\frac{\partial V / \partial p_{l}}{\partial V / \partial w}$, you obtain: the same result as in (b.i)
v. Derive the expenditure function.

Solving for w in the indirect utility function we obtain:
$e(p, u)=\left[p_{x}+p_{y}+2 \sqrt{p_{x} p_{y}}\right] \exp \{u\}$
vi. Derive the Hicksian demands using Shephard's Lemma .

$$
\left\{\begin{array}{l}
h_{x}(p, u)=e^{u}\left[1+\sqrt{\frac{p_{y}}{p_{x}}}\right] \\
h_{y}(p, u)=e^{u}\left[1+\sqrt{\frac{p_{x}}{p_{y}}}\right]
\end{array}\right.
$$

