APEC 8002: Recitation 2^{1}
 By Julieth Santamaria

Suppose a producer has two manufacturing plants (denoted by A and B) that produce a single identical output (q^{j} for $j=A, B$) using the same two inputs (z_{1}^{j} and z_{2}^{j} for $j=A, B$) with production possibility sets that are nonempty, closed, satisfy weak free disposal, and satisfy strict convexity. The jth plant cost function is:

$$
C^{j}=\frac{r_{1} r_{2}}{\left(r_{1}^{\alpha^{j}}+r_{2}^{\alpha^{j}}\right)^{1 / \alpha^{j}}} j^{j^{2}}
$$

Where $r_{1}>0$ and $r_{2}>0$ are price of the first and second input, and $\alpha^{j}>0$
a) Find the producer's profit maximizing supplies assuming the competitive price of output is $\mathrm{p}>0$.

$$
\begin{gathered}
\max _{q^{A} \geq 0 ; q^{B} \geq 0} \pi=p\left(q^{A}+q^{B}\right)-\frac{r_{1} r_{2}}{\left(r_{1}^{\alpha^{A}}+r_{2}^{\alpha^{A}}\right)^{\frac{1}{\alpha^{A}}}} q^{A^{2}}-\frac{r_{1} r_{2}}{\left(r_{1}^{\alpha^{B}}+r_{2}^{\alpha^{B}}\right)^{1 / \alpha^{B}}} q^{B^{2}} \\
q^{A *}=\frac{P\left(r_{1}^{\alpha^{A}}+r_{2}^{\alpha^{A}}\right)^{1 / \alpha^{A}}}{2 r_{1} r_{2}} \\
q^{B *}=\frac{P\left(r_{1}^{\alpha^{B}}+r_{2}^{\alpha^{B}}\right)^{1 / \alpha^{B}}}{2 r_{1} r_{2}}
\end{gathered}
$$

b) What are the shares of output across plants? What parameters do these shares depend on and what is the economic intuition of this result?

$$
\begin{aligned}
& \theta^{A}=\frac{\left(r_{1}^{\alpha^{A}}+r_{2}^{\alpha^{A}}\right)^{\frac{1}{\alpha^{A}}}}{\left(r_{1}^{\alpha^{A}}+r_{2}^{\alpha A}\right)^{1 / \alpha^{A}}+\left(r_{1}^{\alpha^{B}}+r_{2}^{\alpha^{B}}\right)^{1 / \alpha^{B}}} \\
& \theta^{A}=\frac{\left(r_{1}^{\alpha^{B}}+r_{2}^{\alpha^{B}}\right)^{1 / \alpha^{B}}}{\left(r_{1}^{\alpha^{A}}+r_{2}^{\alpha^{A}}\right)^{1 / \alpha^{A}}+\left(r_{1}^{\alpha^{B}}+r_{2}^{\alpha^{B}}\right)^{1 / \alpha^{B}}}
\end{aligned}
$$

Notice they don't depend on prices

[^0]c) Derive the producer's profit function and then use this profit function to derive its aggregate unconditional supply and unconditional input demands.

Plug $q^{A *}$ and $q^{B *}$ in the profit function (π). To find the unconditional supply use the identity $q=\frac{\partial \pi}{\partial P}$. For the unconditional input demands use $z_{i}=-\frac{\partial \pi}{\partial r_{i}}, \forall i=1,2$

[^0]: ${ }^{1}$ Based on lecture notes and material from previous years.

