APEC 8001: Recitation notes 3*

Julieth Santamaria

September 21,2017

1 (Quasi)concavity and (Quasi)convexity

- Concavity: A function f(.) is concave if $\forall x, y \in X$, $f[\alpha x + (1 \alpha)y] \ge \alpha f(x) + (1 \alpha)f(y)$. Also if the Hessian matrix of second derivatives is negative semidefinite (i.e. if $zD^2f(.)z' \le 0$).
- Quasiconcavity: A function f(.) is quasiconcave if $\forall x, y \in X$, $f[\alpha x + (1 \alpha)y] \ge \min\{f(x), f(y)\}$. Also if the Hessian matrix is negative semidefinite subject to a constraint $(\forall z, \nabla f(x)z = 0)$

 $concavity \Rightarrow quasiconcavity$

 \succeq is (strictly) convex iff u(.) is (strictly) quasi-concave

Exercises

1. Are there any conditions required for x(p, w) to be convex in $p_l = 1, ..., L$?

$$x(p,w) = \frac{w^{a_1+a_2}}{P_1^{a_1}P_2^{a_2}}$$

2 Optimization

The necessary Kuhn Tucker conditions (KKT) are sufficient for optimality if the objective function of a maximization problem is a concave function, the inequality constraints are continuously differentiable convex functions and the equality constraints are affine functions.

$$\max_{x \in \mathbb{R}^L_+} u(x)$$

s.t. $px \le w$

 $\mathcal{L} = u(x) + \lambda[w - px]$

^{*}Based on lecture notes and other material by Paul Glewwe. Some examples and exercises are from Mas-Colell, A., Whinston, M. D., and Green, J. R. (1995). Microeconomic theory. New York: Oxford university press.

Necessary conditions:

$$\frac{\partial \mathcal{L}}{\partial x} = \nabla u(x) - \lambda p \le 0; \quad x^* [\nabla u(x^*) - \lambda p] = 0$$
$$\frac{\partial \mathcal{L}}{\partial \lambda} = w - px \ge 0; \quad \lambda [w - px] = 0$$

F.O.C. is a necessary but not sufficient condition to achieve the maximum. If u(.) is quasiconcave and monotonic, $\nabla u(x) \neq 0$, $\forall x \in \mathbb{R}^L_+$, then x^* is the solution to UMP.