APEC 8001: Recitation notes 4^{*}

Julieth Santamaria

September 28, 2017

1 EV, CV, DWL - Taxes

- Equivalent variation: Change in consumer's wealth that would be equivalent to the price change in terms of its welfare impact.

$$
\begin{aligned}
E V & =e\left(p^{0}, u^{1}\right)-e\left(p^{0}, u^{0}\right) \\
& =e\left(p^{0}, u^{1}\right)-w \\
& =\int_{p_{1}^{1}}^{p_{1}^{0}} h_{1}\left(p_{1}, \bar{p}_{-1}, u^{1}\right) d p_{1}
\end{aligned}
$$

- Compensating variation: Net revenue of a planner who must compensate the consumer for the price change after it occurs, bringing her back to her original utility u^{0}

$$
\begin{aligned}
C V & =e\left(p^{1}, u^{1}\right)-e\left(p^{1}, u^{0}\right) \\
& =w-e\left(p^{1}, u^{0}\right) \\
& =\int_{p_{1}^{1}}^{p_{1}^{0}} h_{1}\left(p_{1}, \bar{p}_{-1}, u^{0}\right) d p_{1}
\end{aligned}
$$

If $\mathrm{EV}, \mathrm{CV}<0$, the consumer will be worse off after the price change.

- Deadweight loss (DWL): It measures the extra amount by which the consumer is made worse off. When comparing taxation on one good compared to a lump-sum tax it is measured as follows:

In terms of EV, the consumer is worse off under a commodity tax if $-T>E V$

$$
\begin{aligned}
D W L & =w-T-e\left(p^{0}, u^{1}\right) \\
& =\int_{p_{1}^{0}}^{p_{1}^{0}+t}\left[h_{1}\left(p_{1}, \bar{p}_{-1}, u^{1}\right)-h_{1}\left(p_{1}^{0}+t, \bar{p}_{-1}, u^{1}\right)\right] d p_{1}
\end{aligned}
$$

[^0]In terms of CV , the consumer is worse off under a commodity tax if $-C V>T$

$$
\begin{aligned}
D W L & =e\left(p^{1}, u^{0}\right)-w-T \\
& =\int_{p_{1}^{0}}^{p_{1}^{0}+t}\left[h_{1}\left(p_{1}, \bar{p}_{-1}, u^{0}\right)-h_{1}\left(p_{1}^{0}+t, \bar{p}_{-1}, u^{0}\right)\right] d p_{1}
\end{aligned}
$$

Note, size of CV, EV and AV depend on the type of good

- Normal good: $E V>A V>C V$
- Inferior food: $E V<A V<C V$

Exercises:

1. Suppose the government is considering imposing a commodity tax of t on either x_{1} or x_{2}, and the indirect utility function is

$$
v(p, w)=\frac{w^{\alpha_{1}+\alpha_{2}}}{P_{1}^{\alpha_{1}} P_{2}^{\alpha_{2}}}
$$

where $\alpha_{1}, \alpha_{2} \in R_{+}$and $\alpha_{1}+\alpha_{2}>0$. Derive the conditions under which the consumer would be strictly better off with a commodity tax t on good 1 instead of good 2 using the Equivalent Variation (EV).
2. Consider a situation where the government is deciding between imposing a commodity tax of t on good 1 and imposing a lump-sum tax T on consumer's wealth that yields the same amount ot total tax revenue. Suppose the Hicksian demand function of good 1 is

$$
h_{1}(p, u)=u\left(\frac{p_{1}}{\alpha}\right)^{\alpha-1}\left(\frac{p_{2}}{1-\alpha}\right)^{1-\alpha}
$$

with $p_{1}, p_{2}, u>0$ and $\alpha \in(0,1)$. Derive the expression of the deadweight loss of commodity tax using the EV.

[^0]: *Based on lecture notes and other material by Paul Glewwe. Some examples and exercises come from Mas-Colell, A., Whinston, M. D., and Green, J. R. (1995). Microeconomic theory. New York: Oxford university press.

